
1

BARBIERI EXTREME PROGRAMMING APPROACH

FOR SYSTEMS INTEGRATION

(BXPSI)

GIONATA BARBIERI(*) (gionatabarbieri@gmail.com)

__

Abstract

This article aims to introduce, to propose and to describe a new modeling approach for project
managers and software architects about systems integration’s solutions. The goal is pursued
through an algorithm whom matches up peculiar Agile software life cycle concept (Extreme
Programming) with a Waterfall methodology, serviceable especially in case of XSD modifications
and bugs. Moreover this article presents new key performance indicators and cost parameters to
manage each work activity and to regulate the billing phase of Change Requests.

Keywords

Extreme Programming; XP; Software Development Life Cycle; Agile; Waterfall; Systems
Integration; Enterprise Application Integration; EAI; Service Oriented Architecture; SOA;
Middleware; XSD; XML; Enterprise Service Bus; ESB; JMS; Project Target; Macro Task; Micro
Task; Change Request; BXPSI.
__

An “Extreme Programming” (XP) approach typically is characteristic of Agile software

development methodology but it could be applied in a more general context like Waterfall software
development scenario. Many times it happens but not in a concise and well managed way for
middleware technologies and systems integration development.

The complexity of software (SW) development about systems integration (SI) and enterprise
application one (EAI) needs to be leaded by time-box releases constituted of short development
cycles in all the integrity of SW production. That necessity is represented exactly with the use of an
XP approach.

The base unit of middleware (MW) and EAI-SI solutions is an XML Schema Definition (XSD)
to define the interfaces’ pattern in order to validate an Extensible Markup Language (XML) data
message. So, the goal of this article is to refine a new XP approach to contrast any sensible problem
linked with the changes of XSD definitions that are downstream of a functional analysis, act that
means an intensive new working opera for developers conditioned by strong impacts in the program
code.

It is desirable, as a fundamental condition of a correct functional design, that cases as above do
not happen but, nevertheless deprecable, there are situations in which it is possible to realize it (i.e.
new urgent customer requirements).

We can easily structure a complex project in the following parts: a Project Target (PT)
achievable with several Macro Tasks (MT) each of which shaped by Micro Tasks (µT). These last
ones represent the XP kernels of our interest that are tested through Micro Tasks (integration) Tests
(µTT). After all the test phase for each µT, it is obvious that the Macro Tasks (integration) Test

2

(MTT) is implicitly executed. Each µT unit test is considered in this article as part of the µT entity
(and of its development), so it is important to not create confusion about the adopted terminology.

A PT defines the problem domain and the expected implementations directly depending on the
shared requirements analysis. With a MT, in this context, we usually realize a systems integration
unit and its µT represent an operation, a function, an action provided by the systems integration
unit.

In Fig. 1 we have a picture example of an inter-communication among several systems, using an
Enterprise Service Bus (ESB) related to a MW. The systems A and B communicate through XML-
based messages defined by apposite XSDs. So, in example continuing, we can name A2B 1 and A2B
2 etc. these ones, in the line-way from system A to B. Any scenario constituted of information
XML-based messages, as described above, could have whichever complexity form, independently
from both ESB medias and the transportation layer, but the focus of discussion is identical (many
times in a typical complex EAI solution case we have deployed engines that use JMS – Java
Message Service – queues to conduct all our messages).

However, instead of aiming to develop all the expected µTs of a MT, it is better to organize the
works step by step, developing program code for each µT, before completing the MT in toto. It
means that, comparing with our example, first there will be the SW coding of the µT phase related
to, or, handled by A2B 1 SI XML-based messages, second, just with the termination of the previous
phase, will be possible to execute the SW µT development of the code associated to A2B 2 SI
XML-based messages and finally, in an iterative mode, until will be coded the last µT, in according
to a sort of an agile XP method that slices the MT in a cadenced µT SW development.

After the first step (µT development associated to A2B 1 SI XML-based messages) and before
than the second one (µT development associated to A2B 2 SI XML-based messages), this XP
approach reckons on the µTT for the first phase, that allows ourselves to consider the next step only
if result is regular. So we have a sequence of these time-slots, or an algorithm:

 I: µT-1 development
 II: µTT-1
 II.a: µTT-1 KO return to I step to fix the bugs
 II.b: µTT-1 OK jump to III step

 III: µT-2 development
 IV: µTT-2
 IV.a: µTT-2 KO return to III step to fix the bugs
 IV.b: µTT-2 OK jump to V step

…
 n-th: µT-n development
 n-th+I: µTT-n
 n-th+I.a: µTT-n KO return to n-th step to fix the bugs
 n-th+I.b: µTT-n OK >>>>>> MT is completed and tested!

To complete BXPSI algorithm we can use a bug-tracker as help to schedule the roles in the MT.
We have considered now message flows A2B, but the same way is for B2A or X2B etc..
If a post-development or a post-testing XSD modification about a µT is required, each

consequent impact on related XML-based messages is minimized if we adopt BXPSI algorithm,
because we can insert this new task in an exactly step of the algorithm, having tested every µT of a
MT. At this point, there are two possibilities: first (optimal scenario) - each µT is not bonded to
others; in this case there is only a new development, corresponding to new task qualified by the
XSD modification, afterwards to test, so there is a substitution action of the interested time-slot

3

within algorithm chain; second (sub-optimal scenario), in which the impacted µT is wired to others,
so the fixing-oriented development intervention and subsequent tests involve all the µTs, starting
from the i-th µT to the n-th µT. Both scenarios permit to save and to optimize time in terms of SW
code development and of SW test phases because the action is related just to one time-slot (a total
growth of MT development+MTT all-out time * 1/n) with the optimal one, or because the action is
related for few (n-i) time-slots with the sub-optimal one (a total growth of MT development+MTT
all-out time * (n-i)th/n). Following an analytical representation:

if (푀푇	푑푒푣푒푙표푝푚푒푛푡	푇푖푚푒	 + 	푀푇푇	푇푖푚푒) = 푀푇	푇푖푚푒

 usually (worst) scenario:

 (푀푇	푑푒푣푒푙표푝푚푒푛푡	푇푖푚푒	 + 	푀푇푇	푇푖푚푒) = 푀푇	푝표푠푡푚표푑푖푓푖푐푎푡푖표푛	푇푖푚푒
 sub-optimal scenario:

(푀푇	푑푒푣푒푙표푝푚푒푛푡	푇푖푚푒 + 푀푇푇	푇푖푚푒) () = 푀푇	푝표푠푡푚표푑푖푓푖푐푎푡푖표푛	푇푖푚푒
 optimal scenario:

(푀푇	푑푒푣푒푙표푝푚푒푛푡	푇푖푚푒 + 푀푇푇	푇푖푚푒)
1
푛 = 푀푇	푝표푠푡푚표푑푖푓푖푐푎푡푖표푛	푇푖푚푒							

However procedures linked to BXPSI algorithm are extensible to any form of bug to fix in the

SW code.
Finally is useful for any XSD modification/bug, caused by functional analysis-design or

exchange interfaces documents lacks, to define cost criteria to use in a BXPSI approach.
We can consider two cases: 1.) gratis action; 2.) billed action.
The gratis action is represented by the scenarios in which the XSD modification/bug is

signaled during the technical µT analysis-design or mostly if the impacts of the XSD
modification/bug are fixable in a pre-determined or agreed technical µT design time fraction. It is
advisable to establish a bound of 0.5 percentage-points like technical µT design time fraction.

The billed action, comparable with a Change Request (CR), is represented by the scenarios in
which the impacts of the XSD modification/bug exceed the agreed yet percentage for the gratis
action state. Following analytical formulation and an example, having defined %TA (the agreed
technical µT analysis-design bound in percentage terms, or equivalently the gratis action supported
percentage), %푇퐴 (the negation of the gratis action supported percentage, or equivalently the billed
action supported percentage), cTA (billed costs overall associated to technical µT analysis-design
and to µT SW development and related unit tests), cCR (new expected billed costs for a CR, related
to the billed action). Useful it is Fig. 2.

%푇퐴 = 1 − (%푇퐴)

푐퐶푅 = 푐푇퐴 ∗ %푇퐴 [푐푢푟푟푒푛푐푦] .

With the values of %TA=0.3 and cTA=10k$ the results are:

%푇퐴 = 0.7

푐퐶푅 = 7푘$.

4

In conclusion BXPSI algorithm is convenient in a SI context for four reasons: I) to contrast
functional analysis-design or exchange interfaces documents lacks; II) to regulate CRs with
analytical and certain models, especially in a typical work scenario in which there are contracts
between a client SW governance team and a provider SW team, agreed through a negotiation phase
for apposite indicators; III) to insulate criticalities and problems with impacts within our SW code,
using light and standardized procedures organized in regular algorithm steps; IV) to parallelize SW
developments about similar but loose µTs (so in a condition of optimal scenario) with a best effort.

Below it is attached a URL link to set up a BXPSI free on-line calculator tool for Project
Managers and Software Architects involved in SI activities:

http://gbtlc.altervista.org/bxpsi.html

Rome (Italy) – December 7th, 2012 – © by Gionata Barbieri

(*): Gionata Barbieri is Telecommunication Engineer – ICT Science (Master’s and Bachelor’s degrees at “Federico II” University of
Naples – Italy). He has got a post-degree Master (Middleware Academy – UIIP at Biogem Campus in Ariano Irpino – Avellino –
Italy) and the Senior Certification enabling to exercise the profession of ICT Engineer (provided by “Federico II” University of
Naples and Ordine degli Ingegneri della Provincia di Napoli). Currently he works as TIBCO Specialist Consultant and R&D
Software Engineer for Meware SRL in Rome (Italy).

5

Fig. 1

Fig. 2

